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A Stretched Coordinate Technique for Numerical
Absorption of Evanescent and Propagating
Waves in Planar Waveguiding Structures

Michael A. Gribbons, William P. Pinello, and Andreas C. Cangellaris, Member, IEEE

Abstract-Berenger’s PML technique is modified to allow for
the absorption of evanescent and propagating waves in FDTD
modeling of wave propagation in planar waveguiding struc-
tures. Analytic results illustrate the validity and capability of the
proposed modification. Numericat studies explain the numerical
implementation of the modified PML in the FDTD and in the
compact 2D-FDTD algorithms. Guidelines for the proper selec-
tion of the various parameters that govern the performance of
the modified PML are presented. The results from simulations
indicate that the proposed modified PML grid truncation can be
used efficiently for highly accurate numerical analysis of planar
waveguiding structures.

I. INTRODUCTION

BERENGER’ S PERFECTLY MATCHED layer (PML) ap-
proach to the truncation of FDTD grids has been used

successfully in conjunction with electromagnetic radiation and
scattering problems in two and three dimensions [1]–[3].
An alternative approach to the construction” of the PML’s
directly from Maxwell’s equations using stretched coordinates
was presented in [4]. However, up to this point there has
been no detailed investigation of the performance of PML’s
with regards to absorption of bound waves with evanescent
behavior transverse to their direction of propagation. Except
for a brief discussion in [3], there has been no careful
investigation of the effect that a PML, positioned parallel to the
media interface that supports such bound waves, might have
on the propagation characteristics of the wave, especially when

the PML is brought close to the interface.

Published results from FDTD simulations of radiation and

scattering problems indicate that the PML’s can be brought
very close (as close as 2 grid cells) to the radiator/scatterer.
Such a capability is highly desirable for the FDTD analysis
of integrated microwave, millimeter wave and optical cir-
cuits, in order to keep computer memory requirements and
CPU time at a minimum without sacrificing the numerical
accuracy of the simulations. Such circuits include a variety
of resonant structures, the electromagnetic behavior of which

is dependent on the dispersive propagation characteristics
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of the waves supported by the waveguiding sections that
comprise them. Consequently, it is important to investigate
and comprehend the impact of the PML’s on the dispersive
characteristics of planar waveguiding structures before any
circuit-level FDTD simulations using PML’s can be performed
with confidence.

It is shown in this paper that Berenger’s PML truncation

scheme is unable to absorb evanescent waves. First, an analytic
study of the eigenvalue problem of wave propagation in a
dielectric slab waveguide sandwiched between PML’s is used

to show that, in their original form, Berenger’s PML’s disturb
the characteristics of propagating (bounded) eigenmodes and
perturb the values of their effective indices of refraction.
Next, a modification to the original PML is introduced to
alleviate this difficulty. The proposed modified PML is then
implemented in the numerical simulation of wave propagation
in slab waveguides. These simulations are used to describe

the numerical implementation of the modified PML in the
FDTD algorithm and demonstrate its validity and numerical
performance. Finally, applications of the modified PML in
the compact 2D-FDTD dispersion analysis of open microstrip
structures are presented. These applications are used to study
the impact of the various modified PML parameters (e.g., dis-
tance from waveguides, PML thickness, etc.) on the absorption
performance of the PML, and thus generate guidelines for their
proper selection.

II. THEORY

Using the stretched coordinate approach proposed in [4],
Maxwell’s curl equations in a linear, isotropic medium are
written as

where

(1)

(2)

(3)

We restrict our attention to the two-dimensional case with
~j~y = O. As it is well known, Maxwell’s equations decouple
into two independent sets, one involving the field components
lZY, E., and E. (TM polarization), and one involving the
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field components ~v, Hz, and Hz (TE polarization). Assum-

ing time-harmonic variation of the form exp (jut), where

j = ~, the pertinent equations for the TM polarization
in a homogeneous medium with constant & and e are

1(3— Hy
s= ax

(4)

(5)

where the split-component formalism used with Berenger’s
PML condition, Hyz, Hyz, Ezz and E,z, has been used. In

order to derive the wave equation for the TM polarization, we
substitute (4) in (6) and (5) in (7), to obtain

181(9
—W2W+L = ——— —Hy

s= (3X s. ax
1818

—W2W%Z = ——— —Hy.Sz (9Z s, a.z

(8)

(9)

Since (Hg= + HYS) = Hv we obtain

Next, we consider the eigenvalue problem associated with

the TM-modes of the slab dielectric waveguide shown in

Fig. 1. Nonmagnetic materials are assumed. The waveguide
has thickness 2w, constant permittivity El, and its axis coin-
cides with the z axis. Due to the symmetry of the structure,
only the top half is shown. A slab of thickness 1 and permit-
tivity C2< Cl represents the medium outside the guide. Notice
that SZ = SZ = s = 1 for both the guide and the adj scent
slab. Beyond the .E2slab we introduced an ill-layer structure
terminated by a perfect magnetic conductor. All layers in
the structure have the same perrnittivity, C2; however, their
thicknesses, di, and the values of Szt, m-e allowed to vary,
while s,, = l,i = 1,2, . ..)IM. Let /? be the unknown

propagation constant for even TM-mode propagation in z. A
straightforward analysis of the eigenvalue problem results in
the following eigenvalue equation

where & is given by

(
M

1 + exp –2kT,l) exp(–2kZ, ~sZ. d, )

(11)

&= \ Z=l 1
[ M \

(12)

~,,,,,,~,,,,,,
PMC

{dM E2,P0 ‘M

#dM-l E2,~0 a xM-1

Fig. 1. Slab waveguide geometry for analytically soluble problem.

with k~l = Wzpocl – P2 and k~, = /32 – w2poe2. For

propagating modes, k., is real and positive. At this point,

it is appropriate to recall that the eigenvalue equation for the
even TM modes for the case of the standard slab waveguide of
thickness 2W and permittivity Cl embedded in a homogeneous
medium e2 is given by

Thus, the term ~ of (12) may be thought of as the “error”
term caused by the truncated domain and the presence of
the layered structure. It can be seen that as 1 + cm in (12),
~ + 1, recovering the eigenvalue equation for the standard

slab waveguide. Equation (12) also suggests that instead of
letting 1 -+ co, the eigenvalue equation for the standard
waveguide can be reclaimed by letting SZt assume large real
values. We notice that Szt needs to be real and positive to cause
the error terms to become negligible compared to 1. Recall that
for Berenger’s PML sZt is of the form Szt = 1 – j(ui/wci)

and, as such, it does not cause any additional attenuation (since
km, is real) to help reduce the error term in (1 1).

HI. NUMERICAL IMPLEMENTATION

The analysis of the previous section suggests the use of
s values with Re{s } >1 in order to facilitate rapid absorp-
tion of evanescent waves without affecting their propagation
characteristics. Indeed, it is shown in [4] that

is the general solution for the stretching pmarneter which gives
a reflectionless interface. Therefore, in order to encompass the
general case of planar structures that have both radiating and
waveguiding properties, we allow s to assume complex values
with a real part greater than 1. More specifically, SZtakes the
form

s, = s: – js:

()
II

=Sj l–g+.

=+2) (13)
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where i = z, y, z. By factoring out the s; term, the stan-

dard PML imaginary part o/(ue) is given by s~/s~. This

formalism was selected because it facilitates a straightforward

implementation of the modified PML in the time-dependent

Maxwell’s equations that reduces to the orginal Berenger’s

PML formalism when s; = 1.

With this notation for s,, the modified Maxwell’s system
for the TM case, (4)–(7), takes the form

In the above equations the PML condition mi/e = m~/~, i =

x, .z has been used in order to express the magnetic conduc-

tivity o: in terms of the electric conductivity o,. Clearly, the

numerical implementation of the standard Berenger PML is

recovered by setting s: = 1 (i = z, z). The extension to three

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

This analysis can also be applied in a straightforward
manner to compact 2D-FDTD simulations for the dispersive

analysis of uniform waveguiding structures [5]. Let z be

the axis of the uniform waveguide, Using (3) and assuming
propagation in z of the form exp(–j~.z), Maxwell’s curl

equations become

(30)

(31)

(32)

(33)

(34)

where SX and Sy are of the form in (13). If only lossless
systems (i.e., planar waveguides that do not support leaky
modes) are considered, then the field profiles in the transverse
plane will be purely evanescent. Therefore, the Oi in (13) can
be set to zero, resulting in s, = S(. This result shows that
evanescent waves can be absorbed in the PML by simply
scaling the directional derivatives with factors of 1/s. where
i = x, y. Also, since a~ = O, exponential differencing and
splitting of the field components are not required. This means
that absorption of purely evanescent fields can be accounted
for in existing compact 2D-FDTD codes with very little
modification.

IV. NUMERICAL STUDIES

First, we consider the slab dielectric waveguide of Fig. 1.
The core has a half width w = 0.5 cm and index of refraction
of 1.3 and is surrounded by air. A free space operating
wavelength of A = 3.0 cm is assumed in order to ensure
single mode propagation. Also, the analytic solution for the
effective index is nefi = 1.0794 which is near cutoff implying
a mode with significant energy in the evanescent tails. For the
numerical implementation, 5 cells were used between the core
and the PML. For the discretization of dx = dy = 1.0 mm
used, this corresponds to 1 = 0.5 cm. The PML is 10 cells thick
and parabolically graded with the real part of SZ%varied as

()

2

s., = (Smax - 1) ; + 1 i=l, z,. ... lo. (36)

For this parabolic variation, the average value of si, sang, is
related to s~ax in the following manner

Smax = 3savg – 2. (37)

Fig. 2 shows the analytic results of (11) with s = s; (solid
line), i.e. o = O, compared with FDTD numerical results (*)
versus smVg.The dotted line is the result of (11) with E = 1.
The stars are obtained from the numerical implementation of
(14)-(17). For these results we excited the structure with the
proper mode driven at the frequency of interest, with o set to
zero. We see that the trend of the numerical implementation
matches that of the analytic results. Furthermore, in all cases
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Fig.2. Results forslab waveguide problem (---solution of(ll)witi~=l)
— solution of (11) with m = O,* FDTD results).

the percent difference between the analytical and numerical
results is less than 0.5’%. We note that the magnitude of
the normalized modal field at the PML interface is around
0.46, showing that it is not necessary to let the field decay
significantly before introducing the PML.

For a more rigorous test, instead of exciting the guide with
a modal field, we excited the guide with a Gaussian profile
driven at the frequency of interest. Specifically, we used

[()]
2

~g(x,t) & exp – ~ sin(27rcOt/~0)

where w is the core half width, co is the speed of light in
vacuum, and A. is the free space wavelength of interest. This
excitation is highly concentrated in the core region of the
waveguide. This implies that there will be significant energy
radiating from this aperature excitation away from the guide

which needs to be absorbed, in addition to the evanescent
field of the waveguide mode.

In Fig. 3, we attempted to find the effective index of the
mode utilizing a parabolically graded m only, i.e., Savg = 1 and

o = a~ax(i/114)2. In other words, we attempted the solution
of the eigenvaule problem using the original PML formalism.

The value of orn~~ was chosen by the formula

q 1n(10)ccOf112
o ~= .

M

2 dz~az

‘i=l

where q is the desired order of the reflection coefficient. This is
nothing more than a discrete form of the equation proposed by
Berenger [1]. We see that the value of neff is highly oscillatory
as a function of a~ax. It is believed that this is due to the
evanescent field not being properly accounted for. However,
as a~.x increases, neff does approach the correct value. While
this result is not clearly understood at the time this paper
is written, it is believed to be the result of some resonance
phenomenon attributed to the phase term exp(–jukm, /we)
introduced by the PML.

The results of Fig. 3 should be contrasted to Fig. 4. In
Fig. 4, o~ax is kept constant at 3.175 (1/fl m), while s,Vg is

varied. Referring to Fig. 3, we see that this value of Omax with

s avg = 1 results @ n.ff = 1.09. By using an S.vg of greater
than 2.0, we see a dramatic improvement in the value of neff.

1’100~

‘h 11.080 .................%. .x X. x .x...,

1.075

t %

t.. i
o 2 4 6 8 10

‘Jm..

Fig. 3. Results for slab waveguide problem, neff as a function of CJmax with

%vg = 1. (-- - solution of (11) with ~ = 1, * FDTD results).

‘“08’0~

<lx 1
K..% ,?,,,,,%.,,,,%,,? ~ ,*,,,..%.*,

Fig. 4. Results for slab waveguide problem, n,ff as a function of s~vg with

~~~~ = 3.175 (1/Q m). (--- solution of (11) with & = 1, * FDTD results).

We see that in Fig. 4, n,ff does have an oscillatory behavior

as in Fig. 3, however the oscillations are much smaller and

the obtained n,ff values are in excellent agreement with the
analytical value of neff over most of the range, in direct

constrast to the results in Fig. 3.

As another application of this modified PML truncation

scheme consider the compact 2D-FDTD dispersion analysis of
open multiconductor waveguiding systems [5]. Comparisons
with other methods for both microstrip and coupled micro strip
structures will be made. Fig. 5 shows the different regions

of interest for compact 2D-FDTD implementations of these
problems. Region 1 represents the FDTD domain and regions

2-4 show the PML’s. For these specific applications, we are

interested in propagating modes only. For such cases, since

there is no splitting of the field components, the same update
equations for the field components may be used in both the

FDTD and PML regions.
The insert in Fig. 6 shows the geometry for an unshielded

microstrip line where w = 1 cm, h = 1 cm, c1 = 2.1.eo, /3 =
2.0 (l/cm), with the PML positioned 5 cells away from the
conductor strip. The PML is made up of 10 cells on the left,
top, and right sides. A parabolic variation in s is used. The

reference solution for the effective dielectric constant, Cr,eff,

of the microstrip is given by Kirchning and Jansen [6] and

was determined by functional approximations from theoretical

and measured values. The values obtained by these functional
approximations have errors for e.,,ff less than 0.6% for 0.1 ~
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Fig. 5. Placement of modified PML regions for 2D-FDTD grid truncation.

o~
o 5 10 15 20

%g

Fig. 6. Percent error in effective permittivity of an unshielded microstrip
with w = h = 1 cm, 61 = 2.1eo, ~ = 2.0 cm–l. 10 cell thick PML’s with
parabolic variation in s are placed 10 cells away from the strip.

w/h < 1.00 with 1 s er. 5 20 and O 5 h/Ao < 0.13. Fig. 6

plots the percent error of the compact 2D-FDTD solution for

cr.,eff as the value of Savg in SZ and SY changes. For values
of S..g z 4, the accuracy of the FDTD solution is within the

accuracy of the reference solution. Fig. 7 shows the effect of
varying the number of cells in the PML for the same microstrip
geometry as in Fig. 6. The variation in s is parabolic with
Savg = 10. This plot shows that very accurate valueS for ~r-,efi

can be obtained with as little as 4 cells in the PML.

Next, the accuracy of Cr,.ff for the unshielded microstrip

is ,examined when the number of cells in the buffer region

between the conductor and PML is varied for different values
of G. and w. Fig. 8 shows how the percent error in cr.,~fi

changes as the number of cells in the buffer region increases
from 4–20, for different values of c, with w = 1 cm, h =

1 cm, and,6 = 2.0 (l/cm). The PML is made up of 10 cells on

the left, top, and right sides. Once again, a parabolic variation

of s in the PML with Savg = 10 is used. A general trend

which can be observed is that the accuracy of the calculated

value of er,eff increases with larger values of c,. This is

consistent with the fact that microstrip structures with lower
vahres of substrate dielectric constant exhibit stronger fringing.
The anomalous behavior in the percent error value depicted in
Fig. 8 for large values of er could be due to the error in the
reference solution since the FDTD results are well within the
accuracy of the reference.

0.60

0.50
%J

c.-
L 0.40
p
k)
N

0.30

5 10 15 20
number of cells

Fig. 7. Percent error in effective permittivity of the microstrip of Fig. 6
versus number of cells in PML. The variation in s is parabolic with

s~v~ = 10. The PMUs are placed 10 cells away from the strip.
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-,.. -,------ _-. ----”-”-’--”-C, = 9.7
0.05 -
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Fig. 8. Percent error in effective permittivity of a microstrip versus number
of cells in the buffer layer between conductor and PML for different values
of e,. A parabolic variation in s with s~.g = 10 is used. The PML’s are
10 cells thick,

Fig. 9 shows how the error in the calculated value of G.,.E

changes for different values of w with all other parameters
being the same as those for Fig. 6 with s~~g = 10. This study

shows that as the width of the conductor decreases, the error

in Cr,.ff increases. Again, this behavior is consistent with the
fact that the fringing of the field is more profound for lower

values of w/h. Clearly, the smaller the ratio w/h, the larger

the distance between the PML and the conductor need be,

even though the dependence is negligible for w/h >0,6. Once

again, since the FDTD solution is within the accuracy of the

reference solution for larger values of w/h, no comments can

be made about the general behavior for these cases, except

that the error in e.,eff is clearly less than that for microstrips

with small values of w/h (<0.5). This study was done for a
substrate with e, = 2.1. In view of the fact that larger values of

G. reduce fringing, this study suggests that the modified PML

can be placed as close as 5 cells away from the strips for
microstrip structures with w/h >0.3 and Cr >2. Furthermore,

the results in the previous figures indicate that a 5-cell modified

PML with Sa,g = 5 suffices for highly accurate compact 2D-
FDTD dispersion analysis of unshielded microstrip structures.

The next study considers the compact 2D-FDTD analysis of
a coupled microstrip structure. Fig. 10 depicts the frequency

dependence of the effective dielectric constant for the even
and odd modes of the coupled microstrip shown in the insert
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number of cells

Fig, 9. Percent error in effective permittivity of a rnicrostrip versus number
of cells in the buffer layer between conductor and PML for different values of
w, 10 cell thick PML’s with parabolic variation in s (savg = 10) are used.

6.5
+8/2+.+

1

0.04 0.06 0.08 0.10 0.12 0.14

h/AO

Fig. 10. Effective permittivity of even and odd mode for a coupled mi-
crostrip (— and --- 2D-FDTD results, A results from [6]). 10 cell thick
PML’s with parabolic variation in s (sag = 10) are placed 5 cells away
from the conductor.

obtained from a compact 2D-FDTD simulation with modified

PML truncation. For this specific geometry, w/h = 1, s/h =

2, and c1 = 9.7eo. For the odd mode, perfect electric conductor

(PEC) walls are placed on the left and bottom sides while

10 cell parabolic PML’s (savg = 10) are placed on the

top and right sides. The even mode is modeled in a similar
fashion, except that the PEC on the left wall is replaced with
a perfect magnetic conductor (PMC). Even though for both

cases the modified PML layers are placed only 5 cells from
the conductor, the agreement with the results in [6] (A) is

within 1.25%. However, it is important to point out that the

accuracy of the results in [6] is not known.

Finally, in order to provide an additional demonstration of

the effectiveness of the modified PMLs, a comparison was
made to the case with the PML absent. The structure under
study is the aforementioned symmetric coupled microstrip.
Fifteen cells from the conductor, a PEC is placed on the top
side and a PMC is placed on the right side. This choice of

top and right walls is not arbitrary. The PEC at the top is
based on the assumption that the tangential electric field is

negligible at that distance from the strip. The PMC on the right

is based on the assumption that, in that direction, the electric

field is essentially parallel to the wall sufficiently far away from

the strip. Fig. 11 shows the power spectral densities (PSD)

of the transformed time domain responses for the odd mode

0.8 -

0.6 -
0
m
a

0.4 -

0.2 -

I --fk---:: , h,,
A-n. . -J \ i

2.0 2.5 3.0 3.5 4.0 4.5 5.0
freq (t3iz)

Fig. 11. Power spectral density of odd mode for the coupled microstrip
shown in the insert in Fig. 10. (— modified PML boundary condition, ---
PMC/PEC boundq condhion).

with @ = 1.5 (I/cm). The solid and dashed lines denote the
spectrum obtained by using the modified PML and PEC/PMC
boundary conditions respectively. The shift in frequency for
the PEC/PMC boundary condition translates to an 8’ZOerror in
C.,.ff. Also note that the PSD for this case shows appreciable
energy beyond the fundamental mode. This is due to excitation
of higher order (waveguide) modes in the structure caused by
the presence of the PEC/PMC walls.

V. CONCLUSION

This paper has demonstrated that, in its original form, the
Berenger PML grid truncation scheme yields unpredictable
results when applied to waveguiding structures that support
bound waves with evanescent behavior. A modification to
the original PML has been introduced which overcomes this
limitation and provides for numerical solutions of high accu-
racy. Analytic and numerical studies of the symmetric slab

waveguide demonstrated that the modified PML reduces the
sensitivity of the calculated eigenvalue to the selection of

the conductivities of the PML. An interesting application of
the proposed modified PML to grid truncation for compact
2D-FDTD simulations was presented. Numerical studies of
single and coupled microstrip structures demonstrated that the
modified PML was very effective in tnmcating the purely
evanescent fields associated with the propagating modes in
such planar waveguides, thus allowing for a highly accurate
and computationally efficent dispersion analysis. More impor-
tant, it was shown that if the analysis is restricted only to

propagating (non-leaky) modes, the modified PML does not
require field splitting and its numerical implementation is Yery
straightforward.
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